發新話題
打印

[轉貼] 摩爾定律已逝 黃仁勳「黃氏定律」GPU AI 效能10年增千倍

摩爾定律已逝 黃仁勳「黃氏定律」GPU AI 效能10年增千倍

自由時報 2023/10/06 當人們在討論「摩爾定律」(Moore's Law)是否失效之際,輝達首席科學家達利(Bill Dally)近期演說指出,後摩爾時代的「黃氏定律」(Huang's Law)正帶來電腦效能的結構性轉變,他預測,GPU AI(人工智慧)推理效能10年將提升1000倍。  u# Q: t* y) e( u& s9 V, q" g

9 t# [# V1 D9 U5 Z% F達利在近日舉行的「2023 Hot Chips」年度會議上指出,每一款新的處理器需要獨創性與努力來發明與驗證新成份。這迥然不同於一個世代以前,工程師基本上依賴的是更小、更快速的晶片原理。& q- f+ {( C' a0 Y7 a

/ z$ j2 U( |- v7 O: [他說,他在輝達領導的一個300多人團隊,過去10年協助單一GPU的AI推理效能提升1000倍,未來也將以這樣的速度持續下去。8 n: T6 e/ c( _3 P3 _( N! i

9 R8 i) h( w2 z/ X! FIEEE Spectrum一篇報導,首度以輝達創辦人兼執行長黃仁勳為名,將此驚人進展稱為「黃氏定律」,華爾街日報之後一篇專欄文章,使此定律廣為人知。
* W, y+ a/ ^6 h
2 m* C0 {4 a) L: ^) |達利解釋,輝達一直努力改良GPU微架構,以提升AI推理的效能成長。比如,輝達最新Hopper架構與Transformer引擎,採用8與6位元浮點及整數數學動態組合,產生12.5倍的效能提升,這是為當前生成式AI模型的需求,量身打造的,相關複雜指令協助以更少能源執行更多工作。1 T4 E) w$ o7 |& p: r

. R( N) l# O+ H; p# |2 w此外,輝達安培架構(Ampere)增加結構稀疏性,此為簡化AI模型權重,而又不降低模型準確度的創新方式,該技術帶來另外2倍的效能提升,未來有望再度取得進展。% F, X! B2 w1 {6 r4 ?- M

% |0 h, m9 j1 u( E$ x* u達利也提到,將系統中的GPU,以及系統之間的輝達網絡直接串連的,能提升單一GPU效能1000倍。- |; m& S% J2 z' B
+ Y( T: F2 j7 I8 ?( o
他說,雖然過去10年,輝達的GPU從28奈米升級到5奈米製程,但總體效能僅提升2.5倍,這與一個世代前的摩爾定律迥然有別,根據該定律,隨著晶片越變越小、運算越來越快,效能每兩年應倍增。1 `& i. N! }) R5 a4 i. a

; s. X$ g% Z; B7 t& p) h' d8 z9 ~0 H8 \達利說,儘管摩爾定律的效能提升逐漸失效,但他對於黃氏定律深具信心。他說,因為新一代晶片與系統需要新創新,「這是做電腦工程師的有趣時代;電腦產業正處於決定性時刻,而這一切都取決於公司如何看待晶片與運算的發展」。

TOP

發新話題