發新話題
打印

[轉貼] 摩爾定律已逝 黃仁勳「黃氏定律」GPU AI 效能10年增千倍

摩爾定律已逝 黃仁勳「黃氏定律」GPU AI 效能10年增千倍

自由時報 2023/10/06 當人們在討論「摩爾定律」(Moore's Law)是否失效之際,輝達首席科學家達利(Bill Dally)近期演說指出,後摩爾時代的「黃氏定律」(Huang's Law)正帶來電腦效能的結構性轉變,他預測,GPU AI(人工智慧)推理效能10年將提升1000倍。3 x6 W, p3 I$ r+ z$ }1 J% J0 H
1 t% g/ I; U& S# D
達利在近日舉行的「2023 Hot Chips」年度會議上指出,每一款新的處理器需要獨創性與努力來發明與驗證新成份。這迥然不同於一個世代以前,工程師基本上依賴的是更小、更快速的晶片原理。1 I. e: g4 n' T4 f: W0 @7 A

* P$ J% S. M! S4 q& Q( R; X他說,他在輝達領導的一個300多人團隊,過去10年協助單一GPU的AI推理效能提升1000倍,未來也將以這樣的速度持續下去。8 x+ G5 b7 G$ L9 d4 ?

; D0 a1 \% H# I4 ?IEEE Spectrum一篇報導,首度以輝達創辦人兼執行長黃仁勳為名,將此驚人進展稱為「黃氏定律」,華爾街日報之後一篇專欄文章,使此定律廣為人知。+ M, s$ @* U# @& p" q

  N6 T9 q1 ~2 i2 Z+ T達利解釋,輝達一直努力改良GPU微架構,以提升AI推理的效能成長。比如,輝達最新Hopper架構與Transformer引擎,採用8與6位元浮點及整數數學動態組合,產生12.5倍的效能提升,這是為當前生成式AI模型的需求,量身打造的,相關複雜指令協助以更少能源執行更多工作。
: j) x& x# v* I) j, e
5 z" f8 U/ h1 j) w0 X此外,輝達安培架構(Ampere)增加結構稀疏性,此為簡化AI模型權重,而又不降低模型準確度的創新方式,該技術帶來另外2倍的效能提升,未來有望再度取得進展。1 F  C& J4 ~& v9 R- S* o
. \5 A0 F0 ~  }5 `. F
達利也提到,將系統中的GPU,以及系統之間的輝達網絡直接串連的,能提升單一GPU效能1000倍。& q1 X. b/ L, T( g7 S8 f& b
) [' F7 P3 {  ]. H
他說,雖然過去10年,輝達的GPU從28奈米升級到5奈米製程,但總體效能僅提升2.5倍,這與一個世代前的摩爾定律迥然有別,根據該定律,隨著晶片越變越小、運算越來越快,效能每兩年應倍增。1 F( |  H$ `8 K6 T9 E- H6 I9 Y/ _
# l6 h* s3 o" p/ |" N8 I; V: H5 q8 H
達利說,儘管摩爾定律的效能提升逐漸失效,但他對於黃氏定律深具信心。他說,因為新一代晶片與系統需要新創新,「這是做電腦工程師的有趣時代;電腦產業正處於決定性時刻,而這一切都取決於公司如何看待晶片與運算的發展」。

TOP

發新話題